Differences Between K-Means, K-Medoids, and K-Modes
Clustering algorithms form the backbone of unsupervised machine learning, organizing data into meaningful groups without predefined labels. Among the most widely used partitioning methods, k-means, k-medoids, and k-modes appear deceptively similar—all partition data into k clusters and iteratively optimize cluster assignments. However, fundamental differences in how they represent clusters, measure distances, and handle different data … Read more