How to Use loc in Pandas DataFrame

Pandas is one of the most widely used libraries in Python for data analysis and manipulation. It provides powerful tools to handle structured data efficiently. Among these tools, the .loc[] indexer is essential for accessing and modifying specific parts of a DataFrame. In this article, we’ll explore how to use loc in pandas DataFrame for … Read more

How Generative AI Is Changing Customer Service

Generative AI is revolutionizing industries across the board, and customer service is no exception. With advancements in natural language processing and large language models (LLMs) like ChatGPT, Claude, and Gemini, companies are rethinking how they interact with their customers. Traditional customer support channels are being enhanced or replaced with AI-powered systems that are faster, more … Read more

How to Apply Condition in Pandas DataFrame (With Examples and Best Practices)

Pandas is one of the most powerful Python libraries for data manipulation and analysis. Among its many features, applying conditions in a DataFrame is a core technique every data analyst or data scientist must master. Whether you’re filtering rows, creating new columns based on conditions, or conducting boolean indexing, understanding conditional logic in Pandas is … Read more

Run Jupyter Notebook in Docker Container: A Complete Guide

Running Jupyter Notebook inside a Docker container is a powerful and efficient way to manage your development environment. Whether you’re a data scientist, machine learning engineer, or Python developer, Docker provides a consistent, reproducible, and isolated environment that simplifies dependency management and avoids conflicts with other local installations. In this guide, you’ll learn how to … Read more

How to Install Jupyter Notebook Using pip – A Complete Guide

Jupyter Notebook is one of the most popular tools for data science, machine learning, and Python development. It offers an interactive environment where you can write code, run it in real-time, visualize data, and document your analysis all in one place. While there are many ways to install Jupyter, using pip is the most straightforward … Read more

How to Run Jupyter Notebook in VSCode – A Complete Step-by-Step Guide

Running Jupyter Notebook in Visual Studio Code (VSCode) offers the best of both worlds: the interactive nature of notebooks combined with the power of a full-featured code editor. Whether you’re a data scientist, machine learning engineer, or Python developer, integrating Jupyter into VSCode can greatly enhance your workflow. In this comprehensive guide, we’ll show you … Read more

Check Python Version in Jupyter Notebook – A Complete Guide

Understanding which Python version you’re working with is crucial when developing in Jupyter Notebook. Whether you’re debugging compatibility issues, ensuring consistency across environments, or simply trying to confirm if a new feature is available, knowing how to check the Python version can save time and frustration. In this guide, we’ll explore various ways to check … Read more

How to Add MCP Program in Local LLM

Integrating a Model Control Protocol (MCP) program with a local Large Language Model (LLM) opens new possibilities for managing, controlling, and customizing AI behavior in a more secure, offline, and efficient manner. As organizations seek to harness the power of AI while maintaining strict data privacy, using MCP with a local LLM provides a compelling … Read more

MCP Using Local LLM: A Guide to Private, Efficient AI Agents

As the AI ecosystem evolves, developers and enterprises are increasingly prioritizing data privacy, cost control, and latency. This has led to a surge in interest around deploying large language models (LLMs) locally instead of relying solely on cloud-based APIs. In parallel, frameworks like the Model Context Protocol (MCP) are reshaping how we orchestrate reasoning in … Read more

Langchain Agent with Local LLM: A Practical Guide to Running Autonomous AI Locally

The rise of large language models (LLMs) has empowered developers to build intelligent applications ranging from chatbots to automated research assistants. But relying on cloud-based APIs like OpenAI’s GPT-4 or Anthropic’s Claude can become expensive, raise privacy concerns, and demand constant internet access. This is where the combination of Langchain agents with local LLMs shines. … Read more